Disjoint Stable Matchings in Linear Time

Aadityan Ganesh ${ }^{1}$, Vishwa Prakash ${ }^{1}$, Prajakta Nimbhorkar ${ }^{1,2}$, Geevarghese Philip ${ }^{1,2}$
WG 2021
${ }^{1}$ Chennai Mathematical Institute
${ }^{2}$ UMI ReLaX

The Marriage Model

In the marriage model, we are given with a bipartite graph $G=(A \cup B, E)$, and for each $v \in A \cup B$ a strict ordering \succ_{v} of its neighbours - given in it's preference list.

The Marriage Model

In the marriage model, we are given with a bipartite graph $G=(A \cup B, E)$, and for each $v \in A \cup B$ a strict ordering \succ_{v} of its neighbours - given in it's preference list.

A: Set of menB: Set of women

The Marriage Model

In the marriage model, we are given with a bipartite graph $G=(A \cup B, E)$, and for each $v \in A \cup B$ a strict ordering \succ_{v} of its neighbours - given in it's preference list.

A: Set of menB: Set of women

Stability

A matching M is said to be stable if there is no edge $(m, w) \in E \backslash M$ such that:

$$
w \succ_{m} M(m) \text { and } m \succ_{w} M(w)
$$

That is, m and w prefer each other over their respective partners in M.

$$
\begin{array}{ll}
\left(w_{1}, w_{2}, w_{3}\right) m_{1} & \left(w_{1}\right)\left(m_{1}, m_{2}, m_{3}\right) \\
\left(w_{1}, w_{3}, w_{2}\right) m_{2} & \text { (w }\left(m_{3}, m_{2}, m_{1}\right) \\
\left(w_{3}, w_{2}, w_{1}\right) m_{3} & \text { (w/ }\left(m_{2}, m_{1}, m_{3}\right)
\end{array}
$$

Stability

A matching M is said to be stable if there is no edge $(m, w) \in E \backslash M$ such that:

$$
w \succ_{m} M(m) \text { and } m \succ_{w} M(w)
$$

That is, m and w prefer each other over their respective partners in M.

$$
\left(w_{1}, w_{2}, w_{3}\right)
$$

Stability

A matching M is said to be stable if there is no edge $(m, w) \in E \backslash M$ such that:

$$
w \succ_{m} M(m) \text { and } m \succ_{w} M(w)
$$

That is, m and w prefer each other over their respective partners in M.

$$
\left(w_{1}, w_{2}, w_{3}\right)
$$

Stability

A matching M is said to be stable if there is no edge $(m, w) \in E \backslash M$ such that:

$$
w \succ_{m} M(m) \text { and } m \succ_{w} M(w)
$$

That is, m and w prefer each other over their respective partners in M.

Stability

A matching M is said to be stable if there is no edge $(m, w) \in E \backslash M$ such that:

$$
w \succ_{m} M(m) \text { and } m \succ_{w} M(w)
$$

That is, m and w prefer each other over their respective partners in M.

A stable matching always exists (Gale and Shapley, 1962) and can be found in linear time.

Gale and Shapley Algorithm

Unmatched men propose.

Gale and Shapley Algorithm

Unmatched men propose. Women accept or reject based on their preference list.

Gale and Shapley Algorithm

Unmatched men propose. Women accept or reject based on their preference list.
Key Results:

Gale and Shapley Algorithm

Unmatched men propose. Women accept or reject based on their preference list.
Key Results:

1. All possible execution of the Gale-Shapley algorithm yields the same result.

Gale and Shapley Algorithm

Unmatched men propose. Women accept or reject based on their preference list.
Key Results:

1. All possible execution of the Gale-Shapley algorithm yields the same result.
2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

Gale and Shapley Algorithm

Unmatched men propose. Women accept or reject based on their preference list.
Key Results:

1. All possible execution of the Gale-Shapley algorithm yields the same result.
2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.
3. Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Gale and Shapley Algorithm

Unmatched men propose. Women accept or reject based on their preference list.
Key Results:

1. All possible execution of the Gale-Shapley algorithm yields the same result.
2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.
3. Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.
4. The man-optimal stable matching is woman-pessimal, and vice-versa.

Extended Gale-Shapley Algorithm

Extended Gale-Shapley(EGS) algorithm is very similar to the Gale-Shapley algorithm except - EGS modifies the input preference list.

Run of Extended GS Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}
$m_{2}:$	w_{3}	w_{1}	w_{2}
$m_{3}:$	w_{2}	w_{1}	w_{3}

Men's Preference

$w_{1}:$	m_{1}	m_{2}	m_{3}
$w_{2}:$	m_{2}	m_{1}	m_{3}
$w_{3}:$	m_{3}	m_{2}	m_{1}

Women's Preference

Run of Extended GS Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}	$w_{1}:$	m_{1}	m_{2}	m_{3}
$m_{2}:$	w_{3}	w_{1}	w_{2}	$w_{2}:$	m_{2}	m_{1}	m_{3}
$m_{3}:$	w_{2}	w_{1}	w_{3}	$w_{3}:$	m_{3}	m_{2}	m_{1}

Run of Extended GS Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}	$w_{1}:$	m_{1}	m_{2}	m_{3}
$m_{2}:$	w_{3}	w_{1}	w_{2}	$w_{2}:$	m_{2}	m_{1}	
$m_{3}:$	w_{1}	w_{3}	$w_{3}:$	m_{3}	m_{2}	m_{1}	

Run of Extended GS Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}	$w_{1}:$	m_{1}	m_{2}	m_{3}
$m_{2}:$	w_{3}	w_{1}	w_{2}	$w_{2}:$	m_{2}	m_{1}	
$m_{3}:$	w_{1}	w_{3}	$w_{3}:$	m_{3}	m_{2}	m_{1}	

Run of Extended GS Algorithm

m_{1} :	W_{2}		W_{1}	w_{1} :	m_{1}	m_{2}	m_{3}
m_{2} :	W3	W_{1}	W_{2}	W_{2} :	m_{2}	m_{1}	
m_{3} :		w_{1}	W3	W3:	m_{3}	m_{2}	
Men's Preference				Women's Preference			

Run of Extended GS Algorithm

m_{1} :	W_{2}		W_{1}	w_{1} :	m_{1}	m_{2}	m_{3}
m_{2} :	W3	W_{1}	W_{2}	W_{2} :	m_{2}	m_{1}	
m_{3} :		w_{1}	W3	W3:	m_{3}	m_{2}	
Men's Preference				Women's Preference			

The Lattice Structure

A person x is said to prefer a matching M to a matching M^{\prime} if x prefers $p_{M}(x)$ to $p_{M^{\prime}}(x)$.

The Lattice Structure

A person x is said to prefer a matching M to a matching M^{\prime} if x prefers $p_{M}(x)$ to $p_{M^{\prime}}(x)$.

Domination

A stable matching M is said to dominate a stable matching M^{\prime}, written $M \preceq M^{\prime}$, if every man has at least as good a partner in M as he has in M^{\prime}.i.e., every man either prefers M to M^{\prime} or is indifferent between them. M strictly dominates $M^{\prime}\left(M \prec M^{\prime}\right)$ if $M \preceq M^{\prime}$ and $M \cap M^{\prime}=\varnothing$.

The Lattice Structure

A person x is said to prefer a matching M to a matching M^{\prime} if x prefers $p_{M}(x)$ to $p_{M^{\prime}}(x)$.

Domination

A stable matching M is said to dominate a stable matching M^{\prime}, written $M \preceq M^{\prime}$, if every man has at least as good a partner in M as he has in M^{\prime}.i.e., every man either prefers M to M^{\prime} or is indifferent between them. M strictly dominates $M^{\prime}\left(M \prec M^{\prime}\right)$ if $M \preceq M^{\prime}$ and $M \cap M^{\prime}=\varnothing$.

Men's Preference

Meet and Join

Meet and Join

Meet and Join

Men's Preference

Meet and Join

Men's Preference

$$
M^{\prime}=\left\{(m, w) \mid w=\operatorname{best}\left(p_{M_{1}}(m), p_{M_{2}}(m)\right)\right\}
$$

$$
M^{\prime \prime}=\left\{(m, w) \mid w=\operatorname{worst}\left(p_{M_{1}}(m), p_{M_{2}}(m)\right)\right\}
$$

The Lattice Structure

Set of all stable matchings form a distributive lattice under the Domination domination.

Disjoint Stable Matchings

Why do we need them?

Why do we need them?

Why do we need them?

Why do we need them?

Problem Statement

For a given marriage instance, find a largest set S of disjoint stable matchings.

Existence of Disjoint Stable Matchings

Does there exist a marriage matching instances with disjoint stable matchings?

Existence of Disjoint Stable Matchings

Does there exist a marriage matching instances with disjoint stable matchings?

$$
\begin{array}{ll}
m_{1}: w_{1}, w_{2}, w_{3} & w_{1}: m_{2}, m_{3}, m_{1} \\
m_{2}: w_{2}, w_{3}, w_{1} & w_{2}: m_{3}, m_{1}, m_{2} \\
m_{3}: w_{3}, w_{1}, w_{2} & w_{3}: m_{1}, m_{2}, m_{3}
\end{array}
$$

Existence of Disjoint Stable Matchings

Does there exist a marriage matching instances with disjoint stable matchings?

$$
\begin{array}{ll}
m_{1}: w_{1}, w_{2}, w_{3} & w_{1}: m_{2}, m_{3}, m_{1} \\
m_{2}: w_{2}, w_{3}, w_{1} & w_{2}: m_{3}, m_{1}, m_{2} \\
m_{3}: w_{3}, w_{1}, w_{2} & w_{3}: m_{1}, m_{2}, m_{3}
\end{array}
$$

Necessary Condition

If the man-optimal and the woman-optimal stable matchings share a common edge (m, w), then (m, w) is in every stable matching.

This is because w is both the best stable partner and the worst stable partner of m.

So, to have disjoint stable matchings, man-optimal and woman-optimal matchings must be disjoint.

Algorithm: Disjoint Stable Matchings

- Input: Marriage instance G, Empty set S.

Algorithm: Disjoint Stable Matchings

- Input: Marriage instance G, Empty set S.
- $X \leftarrow$ ExtendedGS(G)

Algorithm: Disjoint Stable Matchings

- Input: Marriage instance G, Empty set S.
- $X \leftarrow$ ExtendedGS(G)
- While $X \cap M_{Z}=\varnothing$

Algorithm: Disjoint Stable Matchings

- Input: Marriage instance G, Empty set S.
- $X \leftarrow$ ExtendedGS(G)
- While $X \cap M_{z}=\varnothing$
- $S \leftarrow S \cup X$

Algorithm: Disjoint Stable Matchings

- Input: Marriage instance G, Empty set S.
- $X \leftarrow$ ExtendedGS(G)
- While $X \cap M_{z}=\varnothing$
- $S \leftarrow S \cup X$
- Delete X from G

Algorithm: Disjoint Stable Matchings

- Input: Marriage instance G, Empty set S.
- $X \leftarrow$ ExtendedGS(G)
- While $X \cap M_{z}=\varnothing$
- $S \leftarrow S \cup X$
- Delete X from G
- $X \leftarrow \operatorname{ExtendedGS}(G)$

Run of Disjoint GS Algorithm

Men's preference list

Run of Disjoint GS Algorithm

Men's Preference

Run of Disjoint GS Algorithm

$m_{1}:$
$m_{2}:$
$m_{3}:$
$m_{4}:$
$m_{5}:$
$m_{6}:$
$m_{7}:$

Men's Preference

Run of Disjoint GS Algorithm

$m_{1}:$
$m_{2}:$
$m_{3}:$
$m_{4}:$
$m_{5}:$
$m_{6}:$
$m_{7}:$

Men's Preference

Termination and Time Complexity

In every iteration, we delete at least one entry from the preference list. As the size of preference list is $2 n^{2}$, the algorithm terminates.

For the same reason, the running time of the algorithm is $\mathbf{O}\left(\mathbf{n}^{2}\right)$.

Disjoint Stable Matchings

Lemma 1

Each M_{i} in the set $S=\left\{M_{0}, M_{1}, \cdots, M_{k}\right\}$ is a perfect matching.

Disjoint Stable Matchings

Lemma 1

Each M_{i} in the set $S=\left\{M_{0}, M_{1}, \cdots, M_{k}\right\}$ is a perfect matching.

Note: It does not come freely from Extended GS!
It only guarantees one-one.

Disjoint Stable Matchings

Lemma 2

All the matchings in the set S are stable matchings.

Disjoint Stable Matchings

Lemma 2

All the matchings in the set S are stable matchings.

Lemma 3
If $M_{0}, M_{1}, \cdots, M_{k}$ are the matchings discovered by the algorithm in this order, then $M_{0} \prec M_{1} \prec \cdots \prec M_{k}$.

Disjoint Stable Matchings

Lemma 4

In any arbitrary execution E of the algorithm, for any man m, $p_{M_{i}}(m)$ is the best stable partner of m when, for every man, stable partners from $M_{0}, M_{1}, \cdots, M_{i-1}$ are disallowed.

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Proof:

$$
\begin{aligned}
& M_{0} \longrightarrow M_{1} \longrightarrow \cdots \rightarrow M_{p} \\
& M_{0}^{\prime} \longrightarrow M_{1}^{\prime} \rightarrow \cdots \quad \cdots \rightarrow M_{k}^{\prime}
\end{aligned}
$$

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Proof:

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Proof:

$$
\begin{aligned}
& M_{0} \longrightarrow M_{1} \rightarrow \cdots \rightarrow M_{p} \\
& M_{0} \rightarrow M_{1}^{\prime} \rightarrow \cdots \quad \cdots \rightarrow M_{k}^{\prime}
\end{aligned}
$$

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Proof:

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Proof:

$$
\begin{aligned}
& M_{0} \longrightarrow M_{1} \longrightarrow \cdots \rightarrow M_{p} \\
& M_{0} \rightarrow M_{1} \rightarrow \cdots \quad \cdots \rightarrow M_{k}^{\prime}
\end{aligned}
$$

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Proof:

$$
\begin{aligned}
& M_{0} \rightarrow M_{1} \rightarrow \cdots \rightarrow M_{p} \\
& M_{0} \rightarrow M_{1} \rightarrow \cdots \rightarrow M_{k} \rightarrow \cdots \rightarrow M_{k}^{\prime}
\end{aligned}
$$

Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))
Let $S=\left\{M_{1}, M_{2}, \cdots, M_{k}\right\}$ be a set of stable matchings for a particular stable matchings instance. For each man m, let S_{m} be the sorted multiset $\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}$, sorted according to the preference order of m. For every $i \in\{1,2, \cdots, k\}$ let $M_{i}^{\prime}=\left\{(m, w) \mid m \in \mathcal{M}\right.$ and w is the $i^{\text {th }}$ woman in $\left.S_{m}\right\}$. Then for each $i \in\{1,2, \cdots, k\}, M_{i}^{\prime}$ is a stable matching.

Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))
Let $S=\left\{M_{1}, M_{2}, \cdots, M_{k}\right\}$ be a set of stable matchings for a particular stable matchings instance. For each man m, let S_{m} be the sorted multiset $\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}$, sorted according to the preference order of m. For every
$i \in\{1,2, \cdots, k\}$ let
$M_{i}^{\prime}=\left\{(m, w) \mid m \in \mathcal{M}\right.$ and w is the $i^{\text {th }}$ woman in $\left.S_{m}\right\}$. Then for each $i \in\{1,2, \cdots, k\}, M_{i}^{\prime}$ is a stable matching.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))
Let $S=\left\{M_{1}, M_{2}, \cdots, M_{k}\right\}$ be a set of stable matchings for a particular stable matchings instance. For each man m, let S_{m} be the sorted multiset $\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}$, sorted according to the preference order of m. For every
$i \in\{1,2, \cdots, k\}$ let
$M_{i}^{\prime}=\left\{(m, w) \mid m \in \mathcal{M}\right.$ and w is the $i^{\text {th }}$ woman in $\left.S_{m}\right\}$. Then for each $i \in\{1,2, \cdots, k\}, M_{i}^{\prime}$ is a stable matching.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

$$
\begin{aligned}
& M_{i}^{\prime}=\{(m, w) \mid w \text { is the i-th women in the sorted multiset } \\
& \left.\qquad\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}\right\} \\
& M_{1}^{\prime} \longrightarrow M_{2}^{\prime} \longrightarrow \cdots \rightarrow M_{q}^{\prime}
\end{aligned}
$$

Disjoint Chain

Corollary 7

Let M_{1}, \ldots, M_{k} and $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ be as defined in 6. If M_{1}, \ldots, M_{k} are pairwise disjoint, then $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ form a k-length chain of disjoint stable matchings.

Disjoint Chain

Corollary 7

Let M_{1}, \ldots, M_{k} and $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ be as defined in 6. If M_{1}, \ldots, M_{k} are pairwise disjoint, then $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ form a k-length chain of disjoint stable matchings.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

Disjoint Chain

Corollary 7

Let M_{1}, \ldots, M_{k} and $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ be as defined in 6. If M_{1}, \ldots, M_{k} are pairwise disjoint, then $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ form a k-length chain of disjoint stable matchings.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

$$
\begin{gathered}
M_{i}^{\prime}=\{(m, w) \mid w \text { is the i-th women in the sorted set } \\
\left.\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}\right\}
\end{gathered}
$$

Disjoint Chain

Corollary 7

Let M_{1}, \ldots, M_{k} and $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ be as defined in 6. If M_{1}, \ldots, M_{k} are pairwise disjoint, then $M_{1}^{\prime}, \ldots, M_{k}^{\prime}$ form a k-length chain of disjoint stable matchings.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

$$
\begin{gathered}
M_{i}^{\prime}=\{(m, w) \mid w \text { is the i-th women in the sorted set } \\
\left.\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}\right\}
\end{gathered}
$$

$$
M_{1}^{\prime} \rightarrow M_{2}^{\prime} \rightarrow \cdots \rightarrow M_{k}^{\prime}
$$

Maximum Size Set of Disjoint Stable Matchings

Theorem 8

For a given stable marriage instance, the algorithm gives the maximum size set of disjoint stable matchings.

Enumeration

- Our algorithm gives one of the largest sets of disjoint stable matching.
- Our algorithm gives one of the largest sets of disjoint stable matching.
- Are there multiple solutions to the problem?
- Our algorithm gives one of the largest sets of disjoint stable matching.
- Are there multiple solutions to the problem?

Yes!

$$
\begin{array}{ll}
\left(w_{4}, w_{1}, w_{3}, w_{2}\right) m_{1} & \left(w_{1}\right)\left(m_{2}, m_{1}, m_{3}, m_{4}\right) \\
\left(w_{4}, w_{2}, w_{3}, w_{1}\right) m_{2} & \left(w_{2}\right)\left(m_{1}, m_{3}, m_{2}, m_{4}\right) \\
\left(w_{1}, w_{3}, w_{2}, w_{4}\right) m_{3} & \text { (w) }\left(m_{4}, m_{2}, m_{3}, m_{1}\right) \\
\left(w_{1}, w_{4}, w_{2}, w_{3}\right) m_{4} & \text { (w) }\left(m_{3}, m_{4}, m_{2}, m_{1}\right)
\end{array}
$$

$$
\begin{aligned}
& \left(w_{4}, w_{1}, w_{3}, w_{2}\right) \quad m_{1} \quad\left(m_{2}, m_{1}, m_{3}, m_{4}\right) \\
& \left(w_{4}, w_{2}, w_{3}, w_{1}\right) \\
& \text { (W2) }\left(m_{1}, m_{3}, m_{2}, m_{4}\right) \\
& \left(w_{1}, w_{3}, w_{2}, w_{4}\right) m_{3} \\
& \text { (W3) }\left(m_{4}, m_{2}, m_{3}, m_{1}\right) \\
& \left(w_{1}, w_{4}, w_{2}, w_{3}\right) m_{4} \\
& \text { (W4) }\left(m_{3}, m_{4}, m_{2}, m_{1}\right)
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\left(w_{4}, w_{1}, w_{3}, w_{2}\right) & \text { (w } \\
\left(w_{1}\right. & \left(m_{2}, m_{1}, m_{3}, m_{4}\right) \\
\left(w_{1}, w_{3}, w_{2}, w_{1}\right) & \text { (w } w_{2}
\end{array}\right)\left(m_{1}, m_{3}, m_{2}, m_{4}\right)
$$

$$
S_{1}=\left\{M_{1}, M_{3}\right\} \text { and } S_{2}=\left\{M_{2}, M_{3}\right\}
$$

Enumeration Algorithm

Enumerating all maximum length chains of disjoint stable matchings:

Enumeration Algorithm

Enumerating all maximum length chains of disjoint stable matchings:

Given a marriage instance, we run our algorithm once in men-proposing settings and and once more in women-proposing setting to get the following chains of disjoint stable matchings.

Enumeration Algorithm

Enumerating all maximum length chains of disjoint stable matchings:

Given a marriage instance, we run our algorithm once in men-proposing settings and and once more in women-proposing setting to get the following chains of disjoint stable matchings.

Enumeration Algorithm

We konw that, between any two stable matchings M_{1}, M_{2} such that $M_{1} \preceq M_{2}$, we can easily construct the sublattice of all the stable matchings between M_{1} and M_{2}.

Enumeration Algorithm

We konw that, between any two stable matchings M_{1}, M_{2} such that $M_{1} \preceq M_{2}$, we can easily construct the sublattice of all the stable matchings between M_{1} and M_{2}.

Enumeration Algorithm

We konw that, between any two stable matchings M_{1}, M_{2} such that $M_{1} \preceq M_{2}$, we can easily construct the sublattice of all the stable matchings between M_{1} and M_{2}.

Enumeration Algorithm

Let $X=\left\{X_{0}, \cdots X_{k}\right\}$ be a maximum-length chain of disjoint stable matchings i.e. $X_{0} \prec X_{1} \prec \cdots \prec X_{k}$. We note the following property of the matchings in X.
Lemma 9
For $0 \leq i \leq k, A_{i} \preceq X_{i} \preceq B_{k-i}$

$$
x_{0} \longrightarrow x_{1} \longrightarrow \cdots \longrightarrow x_{0}
$$

Enumeration Algorithm

Let $X=\left\{X_{0}, \cdots X_{k}\right\}$ be a maximum-length chain of disjoint stable matchings i.e. $X_{0} \prec X_{1} \prec \cdots \prec X_{k}$. We note the following property of the matchings in X.

Lemma 9

For $0 \leq i \leq k, A_{i} \preceq X_{i} \preceq B_{k-i}$

Enumeration Algorithm

With the help of lemma 9, we use branching technique to enumerate all possible max-length chains of disjoint stable matchings in polynomial delay.

Random Instance

We analyze the number of maximum-length chains of disjoint stable matchings in a random stable matchings instance with complete lists.

Random Instance

We analyze the number of maximum-length chains of disjoint stable matchings in a random stable matchings instance with complete lists.

Lemma 10

The probability of the number of maximum size chains of disjoint stable matchings exceeding $\left(\frac{n}{\ln n}\right)^{\ln n}$ is at most $O\left(\frac{(\ln n)^{2}}{n^{2}}\right)$.

Random Instance

We analyze the number of maximum-length chains of disjoint stable matchings in a random stable matchings instance with complete lists.

Lemma 10

The probability of the number of maximum size chains of disjoint stable matchings exceeding $\left(\frac{n}{\ln n}\right)^{\ln n}$ is at most $O\left(\frac{(\ln n)^{2}}{n^{2}}\right)$.

Corollary 11

The enumeration algorithm terminates in $O\left(n^{4}+n^{2 \ln n+2}\right)$ time with probability 1 as $n \rightarrow \infty$.

Thank You!

