Disjoint Stable Matchings in Linear Time

Aadityan Ganesh¹, Vishwa Prakash¹, Prajakta Nimbhorkar^{1,2}, Geevarghese Philip^{1,2} WG 2021

¹Chennai Mathematical Institute

²UMI ReLaX

In the marriage model, we are given with a bipartite graph $G = (A \cup B, E)$, and for each $v \in A \cup B$ a strict ordering \succ_v of its neighbours - given in it's preference list.

A: Set of menB: Set of women

In the marriage model, we are given with a bipartite graph $G = (A \cup B, E)$, and for each $v \in A \cup B$ a strict ordering \succ_v of its neighbours - given in it's preference list.

A: Set of menB: Set of women

In the marriage model, we are given with a bipartite graph $G = (A \cup B, E)$, and for each $v \in A \cup B$ a strict ordering \succ_v of its neighbours - given in it's preference list.

A: Set of menB: Set of women

A matching *M* is said to be stable if there is no edge $(m, w) \in E \setminus M$ such that:

$$w \succ_m M(m)$$
 and $m \succ_w M(w)$

That is, m and w prefer each other over their respective partners in M.

A matching *M* is said to be stable if there is no edge $(m, w) \in E \setminus M$ such that:

$$w \succ_m M(m)$$
 and $m \succ_w M(w)$

That is, m and w prefer each other over their respective partners in M.

A matching *M* is said to be stable if there is no edge $(m, w) \in E \setminus M$ such that:

$$w \succ_m M(m)$$
 and $m \succ_w M(w)$

That is, m and w prefer each other over their respective partners in M.

A matching *M* is said to be stable if there is no edge $(m, w) \in E \setminus M$ such that:

$$w \succ_m M(m)$$
 and $m \succ_w M(w)$

That is, m and w prefer each other over their respective partners in M.

A matching *M* is said to be stable if there is no edge $(m, w) \in E \setminus M$ such that:

$$w \succ_m M(m)$$
 and $m \succ_w M(w)$

That is, m and w prefer each other over their respective partners in M.

Unmatched men propose. Women accept or reject based on their preference list. Key Results

- All possible execution of the Gale-Shapley algorithm yields the same result.
- 2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Unmatched men propose. Women accept or reject based on their preference list.

Key Results:

- All possible execution of the Gale-Shapley algorithm yields the same result.
- 2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Unmatched men propose. Women accept or reject based on their preference list. Key Results:

- All possible execution of the Gale-Shapley algorithm yields the same result.
- 2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Unmatched men propose. Women accept or reject based on their preference list. Key Results:

- 1. All possible execution of the Gale-Shapley algorithm yields the same result.
- 2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Unmatched men propose. Women accept or reject based on their preference list.

Key Results:

- 1. All possible execution of the Gale-Shapley algorithm yields the same result.
- 2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Unmatched men propose. Women accept or reject based on their preference list.

Key Results:

- 1. All possible execution of the Gale-Shapley algorithm yields the same result.
- 2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Unmatched men propose. Women accept or reject based on their preference list.

Key Results:

- 1. All possible execution of the Gale-Shapley algorithm yields the same result.
- 2. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Extended Gale-Shapley(EGS) algorithm is very similar to the Gale-Shapley algorithm except - EGS modifies the input preference list.

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	<i>m</i> 3
w3:	<i>m</i> ₃	m_2	m_1

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	<i>m</i> 3
w3:	<i>m</i> ₃	m_2	m_1

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	
<i>w</i> 3:	<i>m</i> 3	m_2	m_1

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	
<i>w</i> ₃ :	<i>m</i> 3	m_2	m_1

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	
<i>w</i> ₃ :	<i>m</i> ₃	m_2	

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	
<i>w</i> ₃ :	<i>m</i> ₃	<i>m</i> ₂	

The Lattice Structure

A person x is said to prefer a matching M to a matching M' if x prefers $p_M(x)$ to $p_{M'}(x)$.

Domination

A stable matching *M* is said to *dominate* a stable matching *M'*, written $M \leq M'$, if every man has at least as good a partner in *M* as he has in *M'*, i.e., every man either prefers *M* to *M'* or is indifferent between them. *M* strictly dominates *M'*($M \prec M'$) if $M \leq M'$ and $M \cap M' = \emptyset$.

A person x is said to prefer a matching M to a matching M' if x prefers $p_M(x)$ to $p_{M'}(x)$.

Domination

A stable matching M is said to *dominate* a stable matching M', written $M \leq M'$, if every man has at least as good a partner in M as he has in M'.i.e., every man either prefers M to M' or is indifferent between them. M strictly dominates $M'(M \prec M')$ if $M \leq M'$ and $M \cap M' = \emptyset$.

A person x is said to prefer a matching M to a matching M' if x prefers $p_M(x)$ to $p_{M'}(x)$.

Domination

A stable matching M is said to *dominate* a stable matching M', written $M \leq M'$, if every man has at least as good a partner in M as he has in M'.i.e., every man either prefers M to M' or is indifferent between them. M strictly dominates $M'(M \prec M')$ if $M \leq M'$ and $M \cap M' = \emptyset$.

 $M' = \{(m, w) \mid w = best(p_{M_1}(m), p_{M_2}(m))\}$

 $M'' = \{(m, w) | w = worst(p_{M_1}(m), p_{M_2}(m))\}$

 $M' = \{(m, w) \mid w = best(p_{M_1}(m), p_{M_2}(m))\}$

 $M'' = \{(m, w) | w = worst(p_{M_1}(m), p_{M_2}(m))\}$

 $M' = \{(m, w) \mid w = best(p_{M_1}(m), p_{M_2}(m))\}$

 $M'' = \{(m, w) | w = worst(p_{M_1}(m), p_{M_2}(m))\}$

$$M' = \{(m, w) \mid w = best(p_{M_1}(m), p_{M_2}(m))\}$$

$$M'' = \{(m, w) \mid w = worst(p_{M_1}(m), p_{M_2}(m))\}$$

The Lattice Structure

Set of all stable matchings form a distributive lattice under the *Domination* domination.

Disjoint Stable Matchings

For a given marriage instance, find a largest set S of disjoint stable matchings.

Does there exist a marriage matching instances with disjoint stable matchings?

Does there exist a marriage matching instances with disjoint stable matchings?

$m_1: w_1, w_2, w_3$	$w_1: m_2, m_3, m_1$
$m_2: w_2, w_3, w_1$	$w_2: m_3, m_1, m_2$
$m_3: w_3, w_1, w_2$	$w_3: m_1, m_2, m_3$

Does there exist a marriage matching instances with disjoint stable matchings?

$m_1: w_1, w_2, w_3$	$w_1: m_2, m_3, m_1$
$m_2: w_2, w_3, w_1$	$w_2: m_3, m_1, m_2$
$m_3: w_3, w_1, w_2$	$w_3: m_1, m_2, m_3$

If the man-optimal and the woman-optimal stable matchings share a common edge (m, w), then (m, w) is in every stable matching.

This is because w is both the best stable partner and the worst stable partner of m.

So, to have disjoint stable matchings, man-optimal and woman-optimal matchings must be disjoint.

- Input: Marriage instance G, Empty set S.
- $X \leftarrow \text{ExtendedGS}(G)$
- While $X \cap M_Z = \emptyset$
 - $S \leftarrow S \cup X$
 - Delete X from G
 - $X \leftarrow \text{ExtendedGS}(G)$

- Input: Marriage instance G, Empty set S.
- $X \leftarrow \text{ExtendedGS}(G)$
- While $X \cap M_Z = \emptyset$
 - $S \leftarrow S \cup X$
 - Delete X from G
 - $X \leftarrow \text{EXTENDEDGS}(G)$

- Input: Marriage instance G, Empty set S.
- $X \leftarrow \text{ExtendedGS}(G)$
- While $X \cap M_Z = \emptyset$

• $S \leftarrow S \cup X$ • Delete X from G • $X \leftarrow \text{EXTENDEDGS}(G)$

- Input: Marriage instance G, Empty set S.
- $X \leftarrow \text{ExtendedGS}(G)$
- While $X \cap M_Z = \emptyset$
 - $S \leftarrow S \cup X$
 - Delete X from G
 - $X \leftarrow \text{EXTENDEDGS}(G)$

- Input: Marriage instance G, Empty set S.
- $X \leftarrow \text{ExtendedGS}(G)$
- While $X \cap M_Z = \emptyset$
 - $S \leftarrow S \cup X$
 - Delete X from G

• $X \leftarrow \text{EXTENDEDGS}(G)$

- Input: Marriage instance G, Empty set S.
- $X \leftarrow \text{ExtendedGS}(G)$
- While $X \cap M_Z = \emptyset$
 - $S \leftarrow S \cup X$
 - Delete X from G
 - $X \leftarrow \text{ExtendedGS}(G)$

Men's preference list

Men's Preference

Men's Preference

Men's Preference

In every iteration, we delete at least one entry from the preference list. As the size of preference list is $2n^2$, the algorithm **terminates**.

For the same reason, the running time of the algorithm is $O(n^2)$.

Each M_i in the set $S = \{M_0, M_1, \dots, M_k\}$ is a perfect matching.

Note: It does not come freely from Extended GS! It only guarantees one-one.

Each M_i in the set $S = \{M_0, M_1, \dots, M_k\}$ is a perfect matching.

Note: It does not come freely from Extended GS! It only guarantees one-one.

All the matchings in the set S are stable matchings.

Lemma 3 If M_0, M_1, \dots, M_k are the matchings discovered by the algorithm in this order, then $M_0 \prec M_1 \prec \dots \prec M_k$.

All the matchings in the set S are stable matchings.

Lemma 3

If M_0, M_1, \cdots, M_k are the matchings discovered by the algorithm in this order, then $M_0 \prec M_1 \prec \cdots \prec M_k$.

In any arbitrary execution E of the algorithm, for any man m, $p_{M_i}(m)$ is the best stable partner of m when, for **every** man, stable partners from M_0, M_1, \dots, M_{i-1} are disallowed.

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm gives the longest chain of disjoint stable matchings.

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let $S = \{M_1, M_2, \dots, M_k\}$ be a set of stable matchings for a particular stable matchings instance. For each man m, let S_m be the sorted multiset $\{p_{M_1}(m), p_{M_2}(m), \dots, p_{M_k}(m)\}$, sorted according to the preference order of m. For every $i \in \{1, 2, \dots, k\}$ let $M'_i = \{(m, w) | m \in \mathcal{M} \text{ and } w \text{ is the } i^{th} \text{ woman in } S_m\}$. Then for each $i \in \{1, 2, \dots, k\}$, M'_i is a stable matching.

Given stable matchings M_1, M_2, \cdots, M_k ,

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let $S = \{M_1, M_2, \dots, M_k\}$ be a set of stable matchings for a particular stable matchings instance. For each man m, let S_m be the sorted multiset $\{p_{M_1}(m), p_{M_2}(m), \dots, p_{M_k}(m)\}$, sorted according to the preference order of m. For every $i \in \{1, 2, \dots, k\}$ let $M'_i = \{(m, w) | m \in \mathcal{M} \text{ and } w \text{ is the } i^{th} \text{ woman in } S_m\}$. Then for each $i \in \{1, 2, \dots, k\}$, M'_i is a stable matching.

Given stable matchings M_1, M_2, \cdots, M_k ,

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let $S = \{M_1, M_2, \dots, M_k\}$ be a set of stable matchings for a particular stable matchings instance. For each man m, let S_m be the sorted multiset $\{p_{M_1}(m), p_{M_2}(m), \dots, p_{M_k}(m)\}$, sorted according to the preference order of m. For every $i \in \{1, 2, \dots, k\}$ let $M'_i = \{(m, w) | m \in \mathcal{M} \text{ and } w \text{ is the } i^{th} \text{ woman in } S_m\}$. Then for each $i \in \{1, 2, \dots, k\}$, M'_i is a stable matching.

Given stable matchings M_1, M_2, \cdots, M_k ,

$$M'_1 \longrightarrow M'_2 \longrightarrow \cdots \longrightarrow M'_q$$

Let M_1, \ldots, M_k and M'_1, \ldots, M'_k be as defined in 6. If M_1, \ldots, M_k are pairwise disjoint, then M'_1, \ldots, M'_k form a *k*-length chain of disjoint stable matchings.

Given stable matchings M_1, M_2, \cdots, M_k ,

Let M_1, \ldots, M_k and M'_1, \ldots, M'_k be as defined in 6. If M_1, \ldots, M_k are pairwise disjoint, then M'_1, \ldots, M'_k form a *k*-length chain of disjoint stable matchings.

Given stable matchings M_1, M_2, \cdots, M_k ,

Let M_1, \ldots, M_k and M'_1, \ldots, M'_k be as defined in 6. If M_1, \ldots, M_k are pairwise disjoint, then M'_1, \ldots, M'_k form a k-length chain of disjoint stable matchings.

Given stable matchings M_1, M_2, \cdots, M_k ,

Let M_1, \ldots, M_k and M'_1, \ldots, M'_k be as defined in 6. If M_1, \ldots, M_k are pairwise disjoint, then M'_1, \ldots, M'_k form a k-length chain of disjoint stable matchings.

Given stable matchings M_1, M_2, \cdots, M_k ,

$$M'_1 \longrightarrow M'_2 \longrightarrow \cdots \longrightarrow M'_k$$

Theorem 8

For a given stable marriage instance, the algorithm gives the maximum size set of disjoint stable matchings.

Enumeration

- Our algorithm gives one of the largest sets of disjoint stable matching.
- Are there multiple solutions to the problem?

Yes!

- Our algorithm gives one of the largest sets of disjoint stable matching.
- Are there multiple solutions to the problem?

- Our algorithm gives one of the largest sets of disjoint stable matching.
- Are there multiple solutions to the problem?

Yes!

 $S_1 = \{M_1, M_3\}$ and $S_2 = \{M_2, M_3\}$

 M_1 M_2 M_3

 $S_1 = \{ \mathit{M}_1, \mathit{M}_3 \}$ and $S_2 = \{ \mathit{M}_2, \mathit{M}_3 \}$

 M_1 M_2 M_3

 $S_1 = \{M_1, M_3\}$ and $S_2 = \{M_2, M_3\}$

Enumerating all maximum length chains of disjoint stable matchings:

Given a marriage instance, we run our algorithm once in men-proposing settings and and once more in women-proposing setting to get the following chains of disjoint stable matchings.

Enumerating all maximum length chains of disjoint stable matchings:

Given a marriage instance, we run our algorithm once in men-proposing settings and and once more in women-proposing setting to get the following chains of disjoint stable matchings.

Enumerating all maximum length chains of disjoint stable matchings:

Given a marriage instance, we run our algorithm once in men-proposing settings and and once more in women-proposing setting to get the following chains of disjoint stable matchings.

$$A_0 \longrightarrow A_1 \longrightarrow \cdots \longrightarrow A_n$$
$$B_k \longleftarrow B_{k-1} \longleftarrow \cdots \longleftarrow B_0$$

We konw that, between any two stable matchings M_1 , M_2 such that $M_1 \leq M_2$, we can easily construct the sublattice of all the stable matchings between M_1 and M_2 .

We konw that, between any two stable matchings M_1 , M_2 such that $M_1 \leq M_2$, we can easily construct the sublattice of all the stable matchings between M_1 and M_2 .

We konw that, between any two stable matchings M_1 , M_2 such that $M_1 \leq M_2$, we can easily construct the sublattice of all the stable matchings between M_1 and M_2 .

Let $X = \{X_0, \dots, X_k\}$ be a maximum-length chain of disjoint stable matchings i.e. $X_0 \prec X_1 \prec \dots \prec X_k$. We note the following property of the matchings in X.

Lemma 9

For $0 \leq i \leq k$, $A_i \leq X_i \leq B_{k-i}$

Let $X = \{X_0, \dots, X_k\}$ be a maximum-length chain of disjoint stable matchings i.e. $X_0 \prec X_1 \prec \dots \prec X_k$. We note the following property of the matchings in X.

Lemma 9

For $0 \leq i \leq k$, $A_i \preceq X_i \preceq B_{k-i}$

With the help of lemma 9, we use *branching technique* to enumerate all possible max-length chains of disjoint stable matchings in *polynomial delay*.

We analyze the number of maximum-length chains of disjoint stable matchings in a random stable matchings instance with complete lists.

The probability of the number of maximum size chains of disjoint stable matchings exceeding $\left(\frac{n}{\ln n}\right)^{\ln n}$ is at most $O\left(\frac{(\ln n)^2}{n^2}\right)$.

Corollary 11 The enumeration algorithm terminates in $O(n^4 + n^{2\ln n+2})$ time with probability 1 as $n \to \infty$. We analyze the number of maximum-length chains of disjoint stable matchings in a random stable matchings instance with complete lists.

Lemma 10

The probability of the number of maximum size chains of disjoint stable matchings exceeding $(\frac{n}{\ln n})^{\ln n}$ is at most $O(\frac{(\ln n)^2}{n^2})$.

The enumeration algorithm terminates in $O(n^4 + n^{2\ln n + 2})$ time with probability 1 as $n \to \infty$.

We analyze the number of maximum-length chains of disjoint stable matchings in a random stable matchings instance with complete lists.

Lemma 10

The probability of the number of maximum size chains of disjoint stable matchings exceeding $(\frac{n}{\ln n})^{\ln n}$ is at most $O(\frac{(\ln n)^2}{n^2})$.

Corollary 11

The enumeration algorithm terminates in $O(n^4 + n^{2 \ln n+2})$ time with probability 1 as $n \to \infty$.

Thank You!