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The Marriage Model

In the marriage model, we are given with a bipartite graph

G = (A∪ B,E ), and for each v ∈ A∪ B a strict ordering ≻v of

its neighbours - given in it’s preference list.
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Stability

A matching M is said to be stable if there is no edge

(m,w) ∈ E\M such that:

w ≻m M(m) and m ≻w M(w)

That is, m and w prefer each other over their respective partners

in M.

m1

m2

m3

w1

w2

w3

(w1,w2,w3)

(w1,w3,w2)

(w3,w2,w1)

(m1,m2,m3)

(m3,m2,m1)

(m2,m1,m3)

A stable matching always exists (Gale and Shapley, 1962) and can

be found in linear time. 3/30
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Gale and Shapley Algorithm

Unmatched men propose. Women accept or reject based on their

preference list.

Key Results:

1. All possible execution of the Gale-Shapley algorithm yields the

same result.

2. It results in “Man-optimal” stable matching.

Man-optimal: Every man is matched with his most favored

partner among all stable partners.

3. Reversing roles, i.e, women proposing, results in

“Woman-optimal” stable matching.

Woman-optimal: Every woman is matched with her most

favored partner among all stable partners.

4. The man-optimal stable matching is woman-pessimal, and

vice-versa.
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Extended Gale-Shapley Algorithm

Extended Gale-Shapley(EGS) algorithm is very similar to the

Gale-Shapley algorithm except - EGS modifies the input preference

list.
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Run of Extended GS Algorithm

m1 :
m2 :
m3 :

w2 w3 w1

w3 w1 w2

w2 w1 w3

Men’s Preference

w1 :
w2 :
w3 :

m1 m2 m3

m2 m1 m3

m3 m2 m1

Women’s Preference

m1

m2

m3

w1

w2

w3
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The Lattice Structure

A person x is said to prefer a matching M to a matching M ′ if x

prefers pM(x) to pM ′(x).

Domination

A stable matching M is said to dominate a stable matching M ′,

written M ⪯ M ′, if every man has at least as good a partner in

M as he has in M ′.i.e., every man either prefers M to M ′ or is

indifferent between them. M strictly dominates M ′(M ≺ M ′) if

M ⪯ M ′ and M ∩M ′ = ∅.

m1 :
m2 :
m3 :
m4 :

Men’s Preference 7/30
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Meet and Join

M1 M2

M ′

M ′′

m1 :
m2 :
m3 :
m4 :

Men’s Preference

M ′ = {(m,w) |w = best(pM1(m), pM2(m))}

M ′′ = {(m,w) |w = worst(pM1(m), pM2(m))}
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The Lattice Structure

Set of all stable matchings form a distributive lattice under the

Domination domination.
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Disjoint Stable Matchings
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Why do we need them?
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Problem Statement

For a given marriage instance, find a largest set S of disjoint stable

matchings.
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Existence of Disjoint Stable Matchings

Does there exist a marriage matching instances with disjoint stable

matchings?

m1 : w1,w2,w3

m2 : w2,w3,w1

m3 : w3,w1,w2

w1 : m2,m3,m1

w2 : m3,m1,m2

w3 : m1,m2,m3

m3

m2

m1

w3

w2

w1

m3

m2

m1

w3

w2

w1

m3

m2

m1

w3

w2

w1
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Necessary Condition

If the man-optimal and the woman-optimal stable matchings share

a common edge (m,w), then (m,w) is in every stable matching.

This is because w is both the best stable partner and the worst

stable partner of m.

So, to have disjoint stable matchings, man-optimal and

woman-optimal matchings must be disjoint.

13/30



Algorithm: Disjoint Stable Matchings

• Input: Marriage instance G , Empty set S .

• X ← ExtendedGS(G )

• While X ∩MZ = ∅
• S ← S ∪ X

• Delete X from G

• X ← ExtendedGS(G )
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Run of Disjoint GS Algorithm
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Termination and Time Complexity

In every iteration, we delete at least one entry from the preference

list. As the size of preference list is 2n2, the algorithm terminates.

For the same reason, the running time of the algorithm is O(n2).
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Disjoint Stable Matchings

Lemma 1

Each Mi in the set S = {M0,M1, · · · ,Mk} is a perfect matching.

Note: It does not come freely from Extended GS!

It only guarantees one-one.

17/30



Disjoint Stable Matchings

Lemma 1

Each Mi in the set S = {M0,M1, · · · ,Mk} is a perfect matching.

Note: It does not come freely from Extended GS!

It only guarantees one-one.

17/30



Disjoint Stable Matchings

Lemma 2

All the matchings in the set S are stable matchings.

Lemma 3

If M0,M1, · · · ,Mk are the matchings discovered by the algorithm

in this order, then M0 ≺ M1 ≺ · · · ≺ Mk .
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Disjoint Stable Matchings

Lemma 4

In any arbitrary execution E of the algorithm, for any man m,

pMi
(m) is the best stable partner of m when, for every man,

stable partners from M0,M1, · · · ,Mi−1 are disallowed.

m6 :

m5 :

m4 :

m3 :

m2 :

m1 :

Men’s preference list
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Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm gives the longest chain of disjoint stable

matchings.

Proof:

M0 M1 · · · Mp

M ′0 M ′1 · · · · · · M ′k
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Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let S = {M1,M2, · · · ,Mk} be a set of stable matchings for a

particular stable matchings instance. For each man m, let Sm be

the sorted multiset {pM1(m), pM2(m), · · · , pMk
(m)}, sorted

according to the preference order of m. For every

i ∈ {1, 2, · · · , k} let
M ′i = {(m,w)|m ∈ M and w is the i th woman in Sm}. Then
for each i ∈ {1, 2, · · · , k}, M ′i is a stable matching.

Given stable matchings M1,M2, · · · ,Mk ,

M ′i = {(m,w) |w is the i-th women in the sorted multiset

{pM1(m), pM2(m), · · · , pMk
(m)} }

M ′1 M ′2 · · · M ′q
21/30



Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let S = {M1,M2, · · · ,Mk} be a set of stable matchings for a

particular stable matchings instance. For each man m, let Sm be

the sorted multiset {pM1(m), pM2(m), · · · , pMk
(m)}, sorted

according to the preference order of m. For every

i ∈ {1, 2, · · · , k} let
M ′i = {(m,w)|m ∈ M and w is the i th woman in Sm}. Then
for each i ∈ {1, 2, · · · , k}, M ′i is a stable matching.

Given stable matchings M1,M2, · · · ,Mk ,

M ′i = {(m,w) |w is the i-th women in the sorted multiset

{pM1(m), pM2(m), · · · , pMk
(m)} }

M ′1 M ′2 · · · M ′q
21/30



Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let S = {M1,M2, · · · ,Mk} be a set of stable matchings for a

particular stable matchings instance. For each man m, let Sm be

the sorted multiset {pM1(m), pM2(m), · · · , pMk
(m)}, sorted

according to the preference order of m. For every

i ∈ {1, 2, · · · , k} let
M ′i = {(m,w)|m ∈ M and w is the i th woman in Sm}. Then
for each i ∈ {1, 2, · · · , k}, M ′i is a stable matching.

Given stable matchings M1,M2, · · · ,Mk ,

M ′i = {(m,w) |w is the i-th women in the sorted multiset

{pM1(m), pM2(m), · · · , pMk
(m)} }

M ′1 M ′2 · · · M ′q
21/30



Disjoint Chain

Corollary 7

Let M1, . . . ,Mk and M ′1, . . . ,M ′k be as defined in 6. If

M1, . . . ,Mk are pairwise disjoint, then M ′1, . . . ,M ′k form a

k-length chain of disjoint stable matchings.

Given stable matchings M1,M2, · · · ,Mk ,

M ′i = {(m,w) |w is the i-th women in the sorted set

{pM1(m), pM2(m), · · · , pMk
(m)} }

M ′1 M ′2 · · · M ′k
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Maximum Size Set of Disjoint Stable Matchings

Theorem 8

For a given stable marriage instance, the algorithm gives the

maximum size set of disjoint stable matchings.
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Enumeration
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• Our algorithm gives one of the largest sets of disjoint stable

matching.

• Are there multiple solutions to the problem?

Yes!
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Enumeration Algorithm

Enumerating all maximum length chains of disjoint stable

matchings:

Given a marriage instance, we run our algorithm once in

men-proposing settings and and once more in women-proposing

setting to get the following chains of disjoint stable matchings.

A0 A1 · · · An

Bk Bk−1 · · · B0
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Enumeration Algorithm

We konw that, between any two stable matchings M1,M2 such

that M1 ⪯ M2, we can easily construct the sublattice of all the

stable matchings between M1 and M2.

A0 A1 · · · An

Bk Bk−1 · · · B0

L1 LkL0

27/30



Enumeration Algorithm

We konw that, between any two stable matchings M1,M2 such

that M1 ⪯ M2, we can easily construct the sublattice of all the

stable matchings between M1 and M2.

A0 A1 · · · An

Bk Bk−1 · · · B0

L1 LkL0

27/30



Enumeration Algorithm

We konw that, between any two stable matchings M1,M2 such

that M1 ⪯ M2, we can easily construct the sublattice of all the

stable matchings between M1 and M2.

A0 A1 · · · An

Bk Bk−1 · · · B0

L1 LkL0

27/30



Enumeration Algorithm

Let X = {X0, · · ·Xk} be a maximum-length chain of disjoint

stable matchings i.e. X0 ≺ X1 ≺ · · · ≺ Xk . We note the following

property of the matchings in X .

Lemma 9

For 0 ≤ i ≤ k, Ai ⪯ Xi ⪯ Bk−i

A0 A1 · · · An

Bk Bk−1 · · · B0

L1 LkL0X0 X1 · · · X0
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Enumeration Algorithm

With the help of lemma 9, we use branching technique to

enumerate all possible max-length chains of disjoint stable

matchings in polynomial delay.
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Random Instance

We analyze the number of maximum-length chains of disjoint

stable matchings in a random stable matchings instance with

complete lists.

Lemma 10

The probability of the number of maximum size chains of disjoint

stable matchings exceeding ( n
ln n )

ln n is at most O( (ln n)
2

n2
).

Corollary 11

The enumeration algorithm terminates in O(n4 + n2 ln n+2) time

with probability 1 as n −→ ∞.
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Thank You!
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